SCIENCE

Mr Thurley

How the new grades compare with the old ones

SCIENCE

Old grades	New grades
A*	9 8
Α	7
В	6 5 STRONG PASS
С	4 STANDARD PASS
D	3
Е	2
F	۷
G	1
U	U

Source: Ofqual

People also ask :

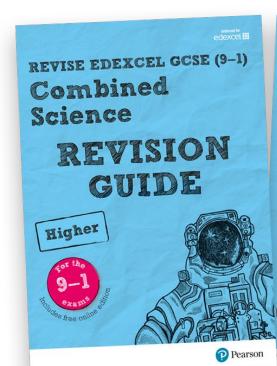
Is Edexcel science easier than AQA?

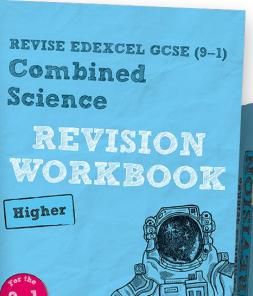
Is AQA or Edexcel easier? As well as the debate between OCR and AQA, lots of students ask: is Edexcel harder than AQA for GCSE? Although every exam board is technically the same difficulty, Edexcel often gets the nod for being slightly more approachable than its counterparts.

Higher

June 2022 - Grade Boundaries			
9-9	266	74%	
9-8	249	69%	
8-8	232	64%	
8-7	215	60%	
7-7	198	55%	
7-6	180	50%	
6-6	162	45%	
6-5	144	40%	
5-5	126	35%	
5-4	108	30%	
4-4	90	25%	
4-3	81	23%	
3-3			
3-2			
2-2			
2-1			
1-1			
U	0	0%	

Foundation


June 2022 - Grade Boundaries				
9-9				
9-8				
8-8				
8-7				
7-7				
7-6				
6-6				
6-5				
5-5	203	56%		
5-4	183	51%		
4-4	164	46%		
4-3	141	39%		
3-3	118	33%		
3-2	96	27%		
2-2	74	21%		
2-1	52	14%		
1-1	30	8%		
U	0	0%		

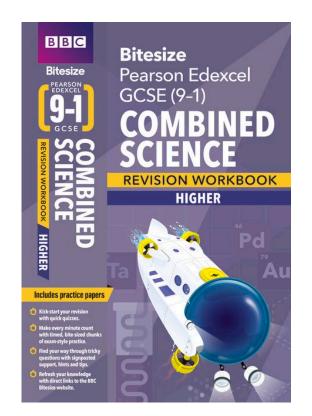

ASSESSMENT GUIDANCE

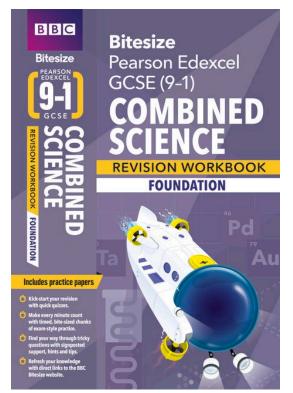
- 6 exams 2x Biology, 2x Chemistry, 2x Physics
- Each paper is 1 hour and 10 minutes.
- Each paper is out of 60 marks. (16.67% of qualification).
- Each paper consists of six questions.
- The paper will include multiple-choice, short answer questions, calculations and extended open-response questions.

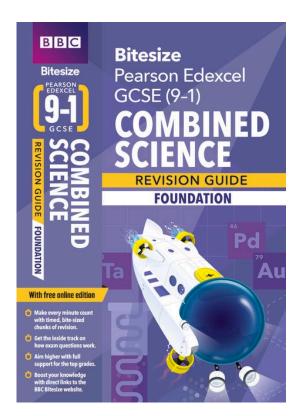
REVISE EDEXCEL GCSE (9-1)

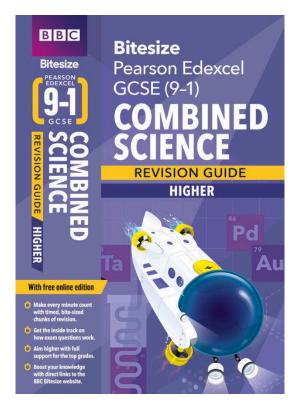
Combined Science

REVISE PEARSON EDEXCEL GCSE (9-1) Combined Science

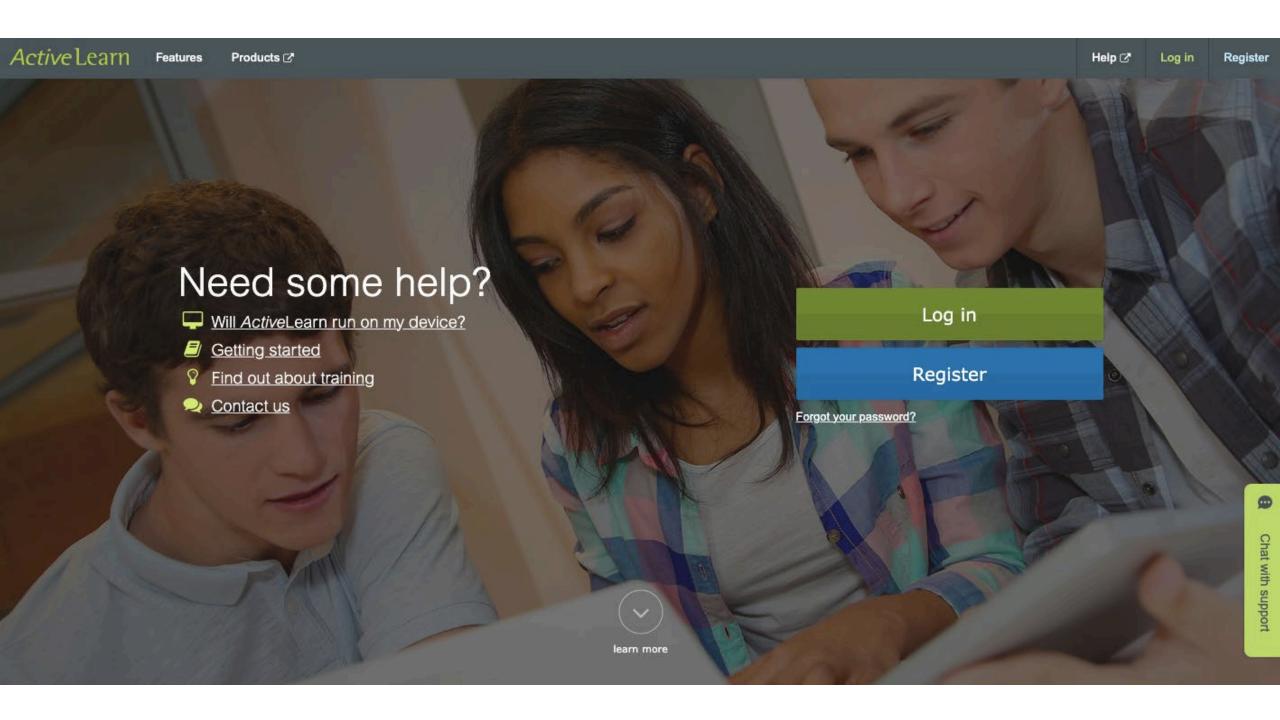







REVISE PEARSON EDEXCEL GOSE (9) Combined Science

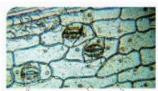
ALWAYS LEARNING



REVISION MATERIAL

CB1b Plant and animal cells

Plant and animal cells


Specification reference: B1.1: B1.4: B1.6

Progression questions

· How are animal cells different to plant cells?

- · What do the sub-cellular structures in eukaryotic cells do?
- . How can we estimate the sizes of cells and their parts?

two guard cells (form a stoma in the surface of a leaf)

surface

A This micrograph ('microscope picture') was taken using Brown's original microscope, of the same cells in which he discovered nuclei (magnification ×67).

The cell membrane is like a very thin bag. It controls what enters and leaves, and separates one cell from another.

The cytoplasm contains a watery jelly and is where most of the cell's activities occur.

One of these blobs is a mitochondrion (see photo C). Mitochondria are jelly-bean shaped structures in which aerobic respiration occurs. Mitochondria are very difficult to see with a light microscope.

2 Draw a table to show the parts of an animal cell and the function of each part.

3 Estimate the diameter of the labelled red blood cell in photo B. Show your working.

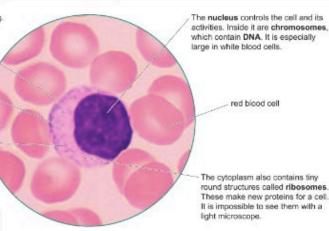

As microscopes improved, scientists saw more details inside cells. In 1828, Robert Brown (1773-1858) examined cells from the surface of a leaf and noticed that each cell contained a small, round blob. He called this the nucleus (meaning 'inner part' in Latin).

Photo A is at a magnification of 67. State what this means.

Brown wrote a scientific paper about his discovery. Matthias Schleiden (1804-1881) read the paper and thought that the nucleus must be the most important part of a plant cell. He mentioned this idea to Theodor Schwann (1810-1882), who then wondered if he could find cells with nuclei in animals. He did. And so the idea of cells being the basic building blocks of all life was born.

A cell with a nucleus is described as eukaryotic. We have now discovered many other sub-cellular ('smaller than a cell') structures in eukaryotic cells and worked out what they do.

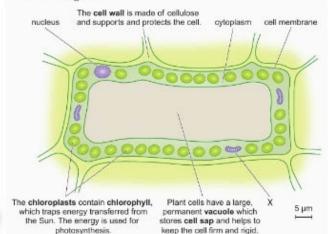
B The labelled central cell is a human white blood cell, which has been stained to make its features show up clearly (magnification ×2500).

The circular area you see in a light microscope is the field of view. If we know its diameter, we can estimate sizes. The diameter of the field of view in photo B is 36 µm. We can imagine that three white blood cells will roughly fit across the field of view. So the cell's diameter is about $\frac{36}{3}$ = 12 µm.

Electron micrographs

Photo C shows many parts inside a white blood cell that you cannot see with a light microscope. However, you still cannot see ribosomes because they are only about 25 nm in diameter.

4 a Look at photo C. What part has been coloured purple?

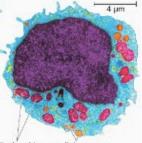

b Use the magnification to estimate the width of the cell.

5 State the diameter of a ribosome in micrometres.

Scale bars are often shown on micrographs and these are also used to estimate sizes. The scale bar on photo C shows how long 4 µm is at this magnification. About three of these bars could fit across the cell at its widest point; the cell is about $3 \times 4 = 12 \,\mu\text{m}$ wide.

Plant cells may have some additional structures compared with animal cells, as shown in diagram D.

D a cell from inside a plant leaf


8 Cells on leaf surfaces contain vacuoles and carry out aerobic respiration but are not green. Suggest what part they lack. Explain your reasoning.

Exam-style question

Describe the function of chloroplasts in a leaf palisade cell.

(3 marks)

mitochondria small, temporary vacuoles

C electron micrograph of a white blood cell (magnification ×4200)

Did you know?

The pigment in human skin is made in sub-cellular structures called melanosomes.

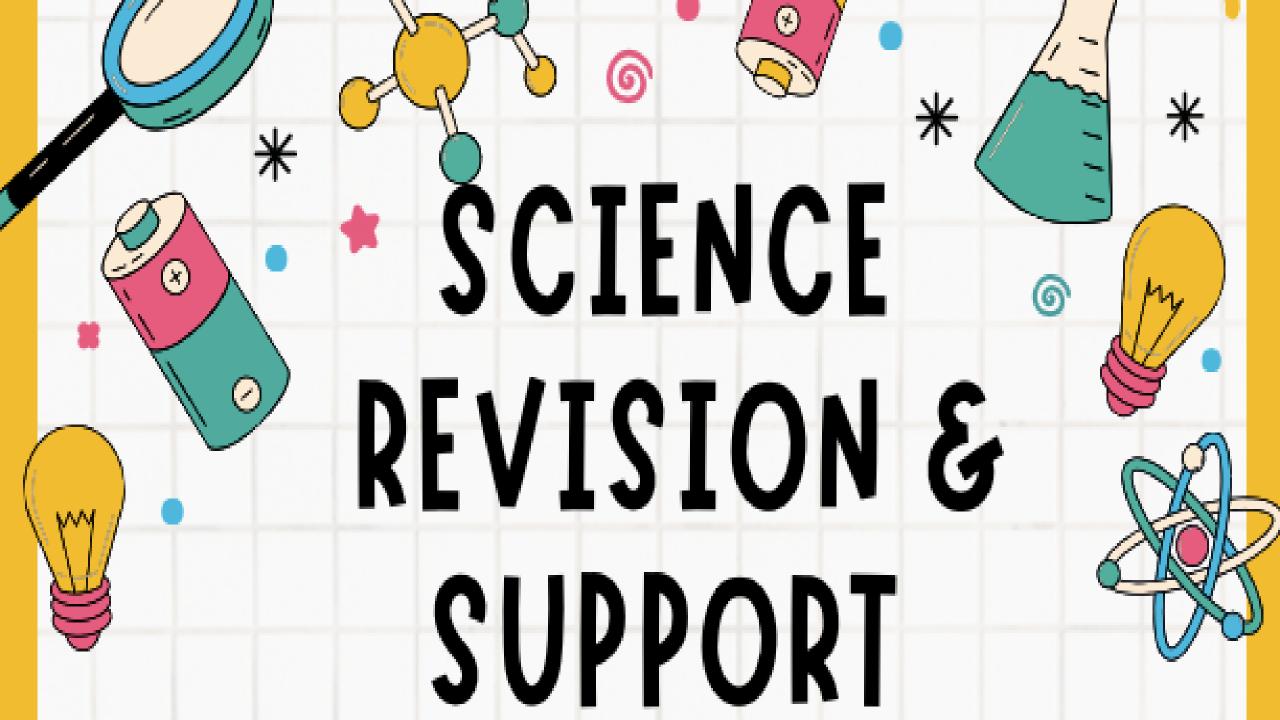
- 6 Use the scale bar on photo C to estimate the:
 - a width of the nucleus at its widest point

b length of the longest mitochondrion (coloured red).

heckpoint

How confidently can you answer the Progression questions?

Strengthen



\$1 Draw a plant cell and label its parts, describing what each part does.

Extend

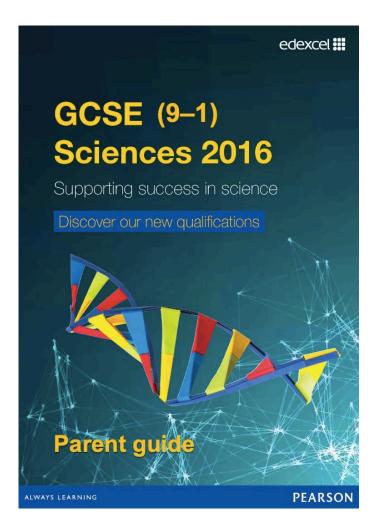
E1 An 'organelle' is a structure inside a cell with a specific function. Compare the organelles found in plant and animal cells.

Monday 12:45 - 13:10 KS4 Biology Room 40

Monday 12:45 - 13:10
A Level Chemistry Drop In
Room 37

Monday 15:15-16:00 KS4 Biology Room 40

Tuesday 15:15 - 16:00 KS4 Chemistry Room 37



Wednesday 15:15 - 16:00 Year 12 Biology Drop In Room 40

Wednesday 15:15 - 16:00 KS4 Physics Room 34

